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Your engine is at TBO or beyond. It is now time to consider an overhaul, a factory remanufactured
engine, or even an upgrade to a larger engine. For those of us with 285 bhp IO-520 engines there is
the temptation to upgrade to a 300 bhp IO-550. Based on research, the difference in installed cost
of a factory remanufactured IO-520 and an STC’d factory remanufactured IO-550 is approximately
$8000. What performance increase does the increased cost buy you? For example, what increases
in cruise speed and rate-of-climb can be expected from the increased horsepower of the IO-550.

Currently there is considerable discussion about the different certification standards for the
IO-520 and the IO-550. Both engines were certified without accessories attached (FAR 33.45/49).
The IO-520 was certified at 285 bhp ±2.5% while the IO-550 was certified at 300 bhp +5% −0%.
The accessories on these engines are: alternator, vacuum (pressure) pump and air conditioner, if
fitted. All other operational parts of the engine, e.g., fuel pump, magnetos, oil pump, etc. were
attached when certified. With few aircraft fitted with air conditioners, that really leaves just the
alternator and vacuum (pressure) pump to absorb power. The vacuum (pressure) pump absorbs
negligible power and in daylight cruise the alternator absorbs perhaps three brake horsepower.
Subtracting 2.5% and the alternator loss leaves an estimated minimum 275 bhp power for the
IO-520 (285− 0.025× 285− 3 = 275).

Additional power losses result from back pressure in the exhaust system and pressure loss in
the air intake system. However, the exhaust system on these engines is fundamentally an open
stack which results in minimum back pressure. Notice also that the air intake is cleverly positioned
such that the propeller acts as a ‘pump’ to increase the intake pressure as the blades pass across
the intake – higher intake pressure results in more air in the cylinders and thus more power from
the additional fuel that can be burned. The net result of the these two effects is probably neutral,
i.e., no net power loss or gain.

Consequently, the estimated minimum installed brake horsepower from an IO-520 is 275 bhp
and the estimated maximum installed brake horsepower is 289 bhp (285 + 0.025 × 285 − 3 =
289). Similarly the estimated minimum installed brake horsepower available from an IO-550 is
297 bhp (300 − 3 = 297) and the estimated maximum installed brake horsepower is 312 bhp
(300 + 0.05× 300− 3 = 312).

Figure 1 shows the calculated rate-of-climb versus TAS for a model E33A for 265, 275, 285,
300 and 315 brake horsepower at a gross weight of 3300 lbs at sea level on a standard day. The
corresponding increases in rate-of-climb compared to that for 275 bhp are: 265/−79, 275/0, 285/79,
300/197, 315/317 fpm. If we plot the increase in rate-of-climb against the change in brake horse-
power compared to 275 bhp as a base, as shown in Figure 2, we see that the rate-of-climb is directly
related to the change in horsepower. Can we explain this? Yes.

Recall that the rate-of-climb is calculated as the difference between thrust power available,
ThPa, and power required to maintain steady level flight, Pr, divided by the aircraft weight, W .
Recall also that the thrust power available, ThPa, is the engine power at the propeller shaft, Pa,
times the propeller efficiency, η (eta), i.e. ThPa = ηPa. Thus, our rate-of-climb equation is

RC =
ThPa − Pr

W

At the velocities for maximum rate-of-climb propeller efficiency is about 79%.
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Figure 1. Rate-of-climb vs velocity.

For the small changes in power available, the velocity for maximum rate-of-climb does not
change significantly (less than 3%). Consequently, the power required does not change significantly.
Let’s assume that the power required is constant; after all the airframe has not changed. Using the
above equation twice, once for the original power available and once for the new power available
and subtracting allows us to calculate the incremental change in rate-of-climb for an incremental
change in thrust power available

rate-of-climb change =
thrust power avail. change

weight

or
∆RC =

∆ThPa
W

=
η∆BHPa

W

where ∆ThPa represents the change in thrust horsepower available and ∆BHPa represents the
change in brake horsepower available.

Thus, if we calculate the increase in sea level maximum rate-of-climb for an upgrade from a
nominal IO-520 (275 bhp) to a nominal IO-550 (297 bhp) we have

∆RC =
∆ThPa
W

=
η∆BHPa

W

=
(0.79)(22)

3300
(550)(60) = 173.8 fpm
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Figure 2. Change in rate-of-climb vs brake horsepower.

where the 550 and the 60 are conversion factors so that the result comes out in feet per minute.
Figure 1 also shows the increase in maximum speed at sea level. Note that when the rate-of-

climb is zero the aircraft is in level flight. Thus, the intersection of the rate-of-climb curve with
the horizontal zero rate-of-climb line is the maximum level flight velocity. The respective increases
in maximum sea level velocity compared to that for 275 bhp are: 265/−3, 275/0, 285/3, 300/7,
315/11 mph. Figure 3 shows the change in maximum velocity at sea level against the change in
brake horsepower. Notice that it is not quite a straight line. Can we explain this? Yes – you knew
I was going to say that didn’t you?

Remember that in steady level flight the thrust power available is equal to the power required
and that the power required is made up of two parts; parasite power required and induced power

Figure 3. Change in velocity vs brake horsepower.
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Here we are only interested in velocity so the equation simplifies to

Thpa = Pr = ConstantV 3︸ ︷︷ ︸
parasite

+
Konstant

V︸ ︷︷ ︸
effective induced

where Constant and Konstant are constants.
Now, at high velocities the second term, i.e., the effective induced power required is small and

can be neglected as a first approximation. Thus, the equation further simplifies to

ThPa = Pr = ConstantV 3︸ ︷︷ ︸
parasite

which means that if the thrust horsepower available increases the velocity only increases as the
cube root of the increase in thrust horsepower available, i.e., the new velocity is

Vnew = 3

√√√√ThPa new
ThPaold

Vold

This is rather discouraging. For example, to double the maximum velocity the thrust horsepower
must be increased by a factor of eight because the cube root of eight is two (2× 2× 2 = 8). By
the way, this is why the line in Figure 3 is not quite straight – it is a piece of a cubic curve.

Most of us do not fly at sea level at maximum power but rather cruise at six to ten thousand
feet at 55% to 75% brake horsepower available. Here the propeller efficiency is about 88%. Let’s
rewrite the equation taking these factors into account. The result is

Vnew = 3
√
ηcBHP new
ηcBHPold

Vold = 3
√

BHP new
BHPold

Vold

where c is the percentage of available power in cruise. Here we see that, except for minor and
negligible variations in propeller efficiency, the result is independent of the propeller efficiency and
percent power, Thus, the change is velocity can be approximated by looking at the change in brake
horsepower only.

Thus, if we calculate the increase in cruise velocity for an upgrade from a nominal IO-520 (275
bhp) to a nominal IO-550 (297 bhp) we have

Vnew = 3
√

BHP new
BHPold

Vold

= 3
√

297
275

Vold

= 3√1.08 = 1.026

or 2.6%. For 75% power at 6000 feet that equates to 5 mph (198× 1.026− 198 = 5)! Five mph
corresponds closely to the value in Figure 3 for a change in horsepower of 22 bhp (297−275 = 22).

One last comment. How do you calculate a cube root. On a calculator, but you don’t have a
calculator with a cube root function. In that case, a good approximation for these small differences
from 1.0 is to subtract 1.0 from the number and divide the result by 3. Here, let’s try that using
the example above (1.08− 1.0)/3 = 0.026 or 2.6% which, to any reasonable precision, is the same
number we obtained from the exact calculation above. Isn’t math interesting?
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